3.151 \(\int \frac {(d+e x^2)^3}{\sqrt {a+c x^4}} \, dx\)

Optimal. Leaf size=326 \[ \frac {3 e x \sqrt {a+c x^4} \left (5 c d^2-a e^2\right )}{5 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {3 \sqrt [4]{a} e \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (5 c d^2-a e^2\right ) E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {a+c x^4}}+\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {5 \sqrt {c} d \left (c d^2-a e^2\right )}{\sqrt {a}}-3 a e^3+15 c d^2 e\right ) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{10 c^{7/4} \sqrt {a+c x^4}}+\frac {d e^2 x \sqrt {a+c x^4}}{c}+\frac {e^3 x^3 \sqrt {a+c x^4}}{5 c} \]

[Out]

d*e^2*x*(c*x^4+a)^(1/2)/c+1/5*e^3*x^3*(c*x^4+a)^(1/2)/c+3/5*e*(-a*e^2+5*c*d^2)*x*(c*x^4+a)^(1/2)/c^(3/2)/(a^(1
/2)+x^2*c^(1/2))-3/5*a^(1/4)*e*(-a*e^2+5*c*d^2)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4
)*x/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2
)+x^2*c^(1/2))^2)^(1/2)/c^(7/4)/(c*x^4+a)^(1/2)+1/10*a^(1/4)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*
arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*c^(1/2))*(15*c
*d^2*e-3*a*e^3+5*d*(-a*e^2+c*d^2)*c^(1/2)/a^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(7/4)/(c*x^4+a)
^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 326, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {1207, 1888, 1198, 220, 1196} \[ \frac {3 e x \sqrt {a+c x^4} \left (5 c d^2-a e^2\right )}{5 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {5 \sqrt {c} d \left (c d^2-a e^2\right )}{\sqrt {a}}-3 a e^3+15 c d^2 e\right ) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{10 c^{7/4} \sqrt {a+c x^4}}-\frac {3 \sqrt [4]{a} e \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (5 c d^2-a e^2\right ) E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {a+c x^4}}+\frac {d e^2 x \sqrt {a+c x^4}}{c}+\frac {e^3 x^3 \sqrt {a+c x^4}}{5 c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)^3/Sqrt[a + c*x^4],x]

[Out]

(d*e^2*x*Sqrt[a + c*x^4])/c + (e^3*x^3*Sqrt[a + c*x^4])/(5*c) + (3*e*(5*c*d^2 - a*e^2)*x*Sqrt[a + c*x^4])/(5*c
^(3/2)*(Sqrt[a] + Sqrt[c]*x^2)) - (3*a^(1/4)*e*(5*c*d^2 - a*e^2)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqr
t[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(5*c^(7/4)*Sqrt[a + c*x^4]) + (a^(1/4)*(
15*c*d^2*e - 3*a*e^3 + (5*Sqrt[c]*d*(c*d^2 - a*e^2))/Sqrt[a])*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a
] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(10*c^(7/4)*Sqrt[a + c*x^4])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1207

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(e^q*x^(2*q - 3)*(a + c*x^4)^(p +
 1))/(c*(4*p + 2*q + 1)), x] + Dist[1/(c*(4*p + 2*q + 1)), Int[(a + c*x^4)^p*ExpandToSum[c*(4*p + 2*q + 1)*(d
+ e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, c, d, e, p},
 x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[q, 1]

Rule 1888

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, With[{Pqq = Coeff[Pq, x, q]}, D
ist[1/(b*(q + n*p + 1)), Int[ExpandToSum[b*(q + n*p + 1)*(Pq - Pqq*x^q) - a*Pqq*(q - n + 1)*x^(q - n), x]*(a +
 b*x^n)^p, x], x] + Simp[(Pqq*x^(q - n + 1)*(a + b*x^n)^(p + 1))/(b*(q + n*p + 1)), x]] /; NeQ[q + n*p + 1, 0]
 && q - n >= 0 && (IntegerQ[2*p] || IntegerQ[p + (q + 1)/(2*n)])] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] && IG
tQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right )^3}{\sqrt {a+c x^4}} \, dx &=\frac {e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {\int \frac {5 c d^3+3 e \left (5 c d^2-a e^2\right ) x^2+15 c d e^2 x^4}{\sqrt {a+c x^4}} \, dx}{5 c}\\ &=\frac {d e^2 x \sqrt {a+c x^4}}{c}+\frac {e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {\int \frac {15 c d \left (c d^2-a e^2\right )+9 c e \left (5 c d^2-a e^2\right ) x^2}{\sqrt {a+c x^4}} \, dx}{15 c^2}\\ &=\frac {d e^2 x \sqrt {a+c x^4}}{c}+\frac {e^3 x^3 \sqrt {a+c x^4}}{5 c}-\frac {\left (3 \sqrt {a} e \left (5 c d^2-a e^2\right )\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+c x^4}} \, dx}{5 c^{3/2}}+\frac {\left (5 \sqrt {c} d \left (c d^2-a e^2\right )+3 \sqrt {a} e \left (5 c d^2-a e^2\right )\right ) \int \frac {1}{\sqrt {a+c x^4}} \, dx}{5 c^{3/2}}\\ &=\frac {d e^2 x \sqrt {a+c x^4}}{c}+\frac {e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {3 e \left (5 c d^2-a e^2\right ) x \sqrt {a+c x^4}}{5 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {3 \sqrt [4]{a} e \left (5 c d^2-a e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {a+c x^4}}+\frac {\left (5 \sqrt {c} d \left (c d^2-a e^2\right )+3 \sqrt {a} e \left (5 c d^2-a e^2\right )\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{10 \sqrt [4]{a} c^{7/4} \sqrt {a+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.14, size = 140, normalized size = 0.43 \[ \frac {5 d x \sqrt {\frac {c x^4}{a}+1} \left (c d^2-a e^2\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {c x^4}{a}\right )+e x \left (x^2 \sqrt {\frac {c x^4}{a}+1} \left (5 c d^2-a e^2\right ) \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-\frac {c x^4}{a}\right )+e \left (a+c x^4\right ) \left (5 d+e x^2\right )\right )}{5 c \sqrt {a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)^3/Sqrt[a + c*x^4],x]

[Out]

(5*d*(c*d^2 - a*e^2)*x*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/a)] + e*x*(e*(5*d + e*x^
2)*(a + c*x^4) + (5*c*d^2 - a*e^2)*x^2*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((c*x^4)/a)]))/(5
*c*Sqrt[a + c*x^4])

________________________________________________________________________________________

fricas [F]  time = 0.92, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {e^{3} x^{6} + 3 \, d e^{2} x^{4} + 3 \, d^{2} e x^{2} + d^{3}}{\sqrt {c x^{4} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^3/(c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral((e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3)/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x^{2} + d\right )}^{3}}{\sqrt {c x^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^3/(c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^3/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

maple [C]  time = 0.01, size = 388, normalized size = 1.19 \[ \frac {\sqrt {-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, d^{3} \EllipticF \left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, x , i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {3 i \sqrt {-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \left (-\EllipticE \left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, x , i\right )+\EllipticF \left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, x , i\right )\right ) \sqrt {a}\, d^{2} e}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}+3 \left (-\frac {\sqrt {-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, a \EllipticF \left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, x , i\right )}{3 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, c}+\frac {\sqrt {c \,x^{4}+a}\, x}{3 c}\right ) d \,e^{2}+\left (\frac {\sqrt {c \,x^{4}+a}\, x^{3}}{5 c}-\frac {3 i \sqrt {-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \left (-\EllipticE \left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, x , i\right )+\EllipticF \left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, x , i\right )\right ) a^{\frac {3}{2}}}{5 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, c^{\frac {3}{2}}}\right ) e^{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^3/(c*x^4+a)^(1/2),x)

[Out]

e^3*(1/5*(c*x^4+a)^(1/2)/c*x^3-3/5*I*a^(3/2)/c^(3/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(-I/a^(1/2)*c^(1/2)*x^2+1)^(1/2
)*(I/a^(1/2)*c^(1/2)*x^2+1)^(1/2)/(c*x^4+a)^(1/2)*(EllipticF((I/a^(1/2)*c^(1/2))^(1/2)*x,I)-EllipticE((I/a^(1/
2)*c^(1/2))^(1/2)*x,I)))+3*d*e^2*(1/3*(c*x^4+a)^(1/2)/c*x-1/3*a/c/(I/a^(1/2)*c^(1/2))^(1/2)*(-I/a^(1/2)*c^(1/2
)*x^2+1)^(1/2)*(I/a^(1/2)*c^(1/2)*x^2+1)^(1/2)/(c*x^4+a)^(1/2)*EllipticF((I/a^(1/2)*c^(1/2))^(1/2)*x,I))+3*I*d
^2*e*a^(1/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(-I/a^(1/2)*c^(1/2)*x^2+1)^(1/2)*(I/a^(1/2)*c^(1/2)*x^2+1)^(1/2)/(c*x^4
+a)^(1/2)/c^(1/2)*(EllipticF((I/a^(1/2)*c^(1/2))^(1/2)*x,I)-EllipticE((I/a^(1/2)*c^(1/2))^(1/2)*x,I))+d^3/(I/a
^(1/2)*c^(1/2))^(1/2)*(-I/a^(1/2)*c^(1/2)*x^2+1)^(1/2)*(I/a^(1/2)*c^(1/2)*x^2+1)^(1/2)/(c*x^4+a)^(1/2)*Ellipti
cF((I/a^(1/2)*c^(1/2))^(1/2)*x,I)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x^{2} + d\right )}^{3}}{\sqrt {c x^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^3/(c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)^3/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (e\,x^2+d\right )}^3}{\sqrt {c\,x^4+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)^3/(a + c*x^4)^(1/2),x)

[Out]

int((d + e*x^2)^3/(a + c*x^4)^(1/2), x)

________________________________________________________________________________________

sympy [C]  time = 4.73, size = 173, normalized size = 0.53 \[ \frac {d^{3} x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} + \frac {3 d^{2} e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {7}{4}\right )} + \frac {3 d e^{2} x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {9}{4}\right )} + \frac {e^{3} x^{7} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {11}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**3/(c*x**4+a)**(1/2),x)

[Out]

d**3*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4)) + 3*d**2*e*x**3*g
amma(3/4)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(7/4)) + 3*d*e**2*x**5*gamma(5/4
)*hyper((1/2, 5/4), (9/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(9/4)) + e**3*x**7*gamma(7/4)*hyper((1/2
, 7/4), (11/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(11/4))

________________________________________________________________________________________